
Wire-Speed TCAM-Based Architectures
for Multimatch Packet Classification

Miad Faezipour, Student Member, IEEE, and Mehrdad Nourani, Senior Member, IEEE

Abstract—Most conventional packet classifiers find only the highest priority filter that matches the arriving packet. However,

new networking applications such as network intrusion detection systems and load balancers require all (or the first few) matching

filters during classification. In this paper, two TCAM-based architectures for multimatch search are introduced. The first one is a

renovated TCAM design that can find all or the first r matches in a packet filter set. The second architecture is a novel partitioning

scheme based on filter intersection properties allowing us to use off-the-shelf TCAMs for multimatch packet classification.

Our classifier engine finds all matches in exactly one conventional TCAM cycle while reducing the power consumption by at least

two orders of magnitude, which is far better than the existing hardware-based designs.

Index Terms—Ternary content addressable memory, multimatch, packet classification, prioritizer, network intrusion detection system,

maximum-minimum intersection partitioning, contention resolver.

Ç

1 INTRODUCTION

1.1 Background

PACKET classification, in general, refers to finding the best
matching filter containing multiple fields in a filter (also

called rule) set for a given packet. The standard five-tuple
fields include the source address, destination address,
protocol, source port, and destination port [1]. Among
these fields, source and destination address fields are
prefixes and often require the longest prefix match (LPM)
methods. Protocol field can be wildcards or exact values.
Source and destination port numbers are typically intro-
duced as ranges. Packet classification is a multidimensional
(multifield) search in contrast to packet forwarding that
only involves search in one dimension, (i.e., the destination
IP address).

Packet classification performs searching the table of
filters to assign a flow identifier for the highest priority filter
that matches the packet in all fields. The returning flow ID
indicates the action that is next applied to the packet. An
example of a packet filter set is shown in Table 1. The
standard five-tuple fields are shown in separate columns for
the purpose of clarity. This table illustrates a small sample
packet filter set with a very few bits for simplicity. Filters
are usually sorted in the order of priority in the filter set. In
this table, x indicates wildcards inserted in any location of
the fields. When a packet arrives, the first (which is
generally the best) matching filter in the set is to be found
in packet classifiers. The matching filter should match the
filter in all five fields. The address (index) of the matching
filter is used to point to the action that needs to be applied to

the packet. Most packet classifiers store the index to indicate
the action that is going to be processed on the packet
afterward. For example, if a packet consisting source
address of 0101, destination address of 0011, source port
of 4, destination port of 6, and protocol field of TCP is
received, the packet classifier should report the second filter
as the matching filter and, hence, would forward the packet
to output port 5. It is obvious that arriving packets may
result in multiple filters matching the packet in the set. In
this example, the arriving packet matches the seventh filter
in addition to the second one. The general packet classifica-
tion process only reports one filter (which is the highest
priority filter) in case of multiple matches. However, we
elaborate why some networking applications require find-
ing multiple matches in the packet filter set.

Filter fields are combination of prefixes, wildcards, and
exact values. Hence, Ternary Content Addressable Mem-
ories (TCAMs) that have the ability to store don’t-care values
in addition to 1’s and 0’s are often utilized to store filters
and perform the parallel search in packet classification. A
traditional packet classifier assigns one TCAM entry for
each filter and finds the index of the highest priority
matching filter in the database (Fig. 1). Range fields are
often translated to multiple entries [1], [2]. Overall, each
filter fi ð0 � i � n� 1Þ contains multiple fields (e.g., in the
standard five-tuple), and also, the filter database often may
have up to 100,000 filters. Therefore, wide TCAM devices
both in terms of bits and entries are used for packet
classification applications.

1.2 Importance of Multimatch Packet Classification

New emerging networking applications such as Network
Intrusion Detection Systems (NIDSs) and load balancers
require finding all or the first few matching filters in packet
classification. Malicious intrusions and denial-of-service
attacks, which are expected to grow rapidly, can be
monitored and detected by NIDS. Once all the matching
filter headers are found, a detection system such as Snort [3]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009 5

. The authors are with the Department of Electrical Engineering, University
of Texas at Dallas, Richardson, TX 75083.
E-mail: {mxf042000, nourani}@utdallas.edu.

Manuscript received 6 June 2007; revised 23 June 2008; accepted 16 July 2008;
published online 22 Aug. 2008.
Recommended for acceptance by S. Nikoletseas.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-06-0208.
Digital Object Identifier no. 10.1109/TC.2008.159.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

scans the packet payload for existing worms. The concept of
Multimatch Classification (MMC) for NIDS is becoming a
major stream of research in the near future, since there is a
great demand for network worm detections [2], [4].

Packet level accounting, transparent monitoring, and
the Programmable Network Element (PNE) are other
networking applications that demand MMC. Specifically,
PNE is the general platform for packet processing in
layers 2-4 in the edge. Packets entering PNEs are classified
to identify the relevant functions. Multimatching classifi-
cation can be utilized to support multiple functions in
PNEs [4].

Both single and multimatch packet classifications should
be ideally performed at the wire data rate. Pure software
solutions suffer from low speed, since they often require
several instructions and as a result several memory accesses
to find a single or multiple matches. To achieve wire-speed
classification, researchers in industry and academia offered
architectural solutions mostly using TCAM [5]. TCAMs are
well suited for performing high-speed parallel searches on
database with ternary entries, since they provide the match
results with deterministic throughput (i.e., one search per
cycle) and deterministic capacity. Hence, TCAM has
become quite popular for packet classification tasks [1],
[6], [7], [8]. While TCAMs perform packet classification at
high speed, they cannot directly report all possible matches
in a database. This is due to the native structure of a TCAM
cell design, which consists of a priority encoder, generating
only the highest priority match in each round. Other
drawbacks of using TCAM are high cost and high power
consumption.

1.3 Main Contribution

Complexity of conventional (software-based) classification
techniques linearly grows with number of filters. Our main
contribution is twofold. First, we propose a multimatching
packet classifier by modifying the prioritizer (PZ) circuit of
conventional TCAM. Since the TCAM entries (cells) remain
unchanged in our design, our multimatching hardware can
be easily adopted for IPv6 where the bit width of the TCAM
entries highly increases [9], [10]. Our system finds r
(predefined by a user) matches in at most r cycles
regardless of total number of filters. This approach has
zero-management (fixed-update) time and is highly effi-
cient when filters are updated regularly. Such properties
significantly improve the performance by one to two orders

of magnitude for large filter set. Second, we propose a
parallel architecture for multimatching packet classification
by efficiently partitioning the entire packet filter set into
disjoint subsets. Each subset is mapped to a relatively small
TCAM, which produces a match in one cycle. In this
technique, off-the-shelf TCAMs are used. Our system finds
r matches in exactly one cycle regardless of the total
number of filters and matches. Our partitioning scheme can
also be employed as a low-power solution to the conven-
tional single-match packet classification in general and
multimatch packet classification in particular. Each of these
two architectures, i.e., customized TCAM and partitioned
structure, can work as a multimatch classifier engine
independently. However, we will show that a tightly
coupled system that employs both architectures would
achieve the maximum performance.

1.4 Paper Organization

The rest of this paper is organized as follows: In Section 2,
we take a glance at prior work related to TCAM-based
multimatch packet classification. In Section 3, we first
derive the optimized logic equations and then elaborate on
our TCAM customized for multimatch tasks. Two config-
urations (i.e., cascaded and parallel) for a scalable design
are also introduced in this section. Section 4 describes our
novel intersection-based partitioning schemes. In Section 5,
the structural features and advantages of our system are
discussed. We summarize our experimental results in
Section 6. Finally, concluding remarks are given in Section 7.

2 PRIOR WORK

Some recent work focused on multimatch packet classifica-
tion using TCAMs. The Entry-invalidation scheme, de-
scribed in [2], is one of the earliest and simplest schemes. In
this method, a valid bit in addition to the header fields is
associated with each TCAM entry. Initially, all entries have
their valid bits set to 1. Searches are performed multiple
times to find all matching entries. Each time a match is
found, the valid bit is set to 0 for that matching entry. The
same search key is applied again until all matches are found.
This method, however, does not support the multithreading
feature, which requires multiple packet processing threads
to have access to the TCAM device at the same time.

The authors in [4] reorganize the TCAM entry filters in a
compatible order to report all matches. The authors use a
geometric intersection scheme to remove the overlaps and
negation among the intersecting filters placed in the TCAM.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

TABLE 1
Example of a Packet Filter Set

Fig. 1. TCAM structure as a single-match classifier.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

This approach may not be suitable for large databases since
it cannot be easily scaled to large tables.

The Set Splitting Algorithm (SSA) introduced in [11] and
[12] splits the filter set into two groups to remove at least
half of the intersections among filters. It then performs the
search on multiple groups in parallel. This method is based
on minimum intersections among filters; however, it adds
filters for partially overlapped filters in one set. In addition,
it performs the search on all sets generated; hence, it
increases the search time and power consumption.

The authors in [2] address the problem of finding
multiple matches in a TCAM by proposing the multimatch
using discriminators (MUD) algorithm. In this algorithm,
the extra bits per TCAM entry are used for the required
encoding. The MUD algorithm provides multiple matches
at high speed. However, it deploys sophisticated encoding
on TCAM entry databases, making it difficult to decode the
data to their original values.

The BV-TCAM architecture introduced in [8] combines
the TCAM and the Bit Vector (BV) algorithm to address the
problem of packet classification for network intrusion
detection. While this approach improves the search
mechanism and the cost by compressing the data repre-
sentation, it does not effectively differentiate the multiple
matches found.

3 MMC USING RENOVATED TCAMS

A TCAM includes a priority encoder. One widely used
implementation of the priority encoder is shown in Fig. 1 by
splitting it into a PZ and a conventional encoder [13]. A
valid log2 n-bit address out of the encoder is generated only
if at most one of its n inputs is high at a time. Thus, the
PZ unit, which provides the encoder input lines, should be
designed carefully. Our main idea is to modify the single-
match PZ unit to a Multimatch PZ (MPZ), as shown in Fig. 2
so that the encoder would generate all matching indices,
one per cycle.

A power-optimized priority encoder cell introduced in
[13] is used as our reference model for the PZ unit. The logic
equation1 for the PZ circuit can be written as

EPi ¼
en �Di; i ¼ 0;

en �
Qi�1

k¼0 Dk

� �
�Di; 1 � i � n� 1:

(
ð1Þ

Equation (1) indicates that the PZ circuit has n inputs
and n outputs, where EPi denotes the ith output, Di’s are
the input lines, and en is the enable line.

3.1 MPZ Structure

We add a control logic circuitry to the PZ circuit to report

all matches in a prioritized sequence. The MPZ circuit,

shown in Fig. 3, functions in response to a counter that

counts from 0 to n, where n is the highest possible number

of matches. In other words, n can be assumed as the

number of inputs in the worst case. On the first clock cycle,

the MPZ should function as a single-PZ unit, reporting the

highest priority match. On the next clock cycle, the next

highest priority match should be provided at the output.

This procedure should be followed in all other clock cycles

until the counter has reached counting up to n. In each

clock cycle, a function of the original inputs and the higher

priority outputs of the PZ circuit in the previous clock cycle

should be fed through the PZ circuit. In each clock cycle, a

new set of inputs should be fed through the PZ. These

inputs are based on a function of the original inputs and

the higher priority PZ outputs in the previous clock cycle.

Let mi denote the original input lines (i.e., match lines from

TCAM words), epi denote the EPi outputs of the PZ after

one clock cycle, Mi be the set of inputs that should be given

to the PZ circuit, and EN be the enable line. The logic

equation for the MPZ circuit can be derived as follows:

EPi ¼
EN �Mi; i ¼ 0;

EN �
Qi�1

k¼0 Mk

� �
�Mi; 1 � i � n� 1;

(
ð2Þ

where Mi in (2) can be computed as

Mi ¼
s �mi; i ¼ 0;
s �mi þ s �mi � epi�1; i ¼ 1;

s �mi þ s � mi �
Pi�1

k¼0 epk

� �
; 2 � i � n� 1:

8><
>: ð3Þ

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 7

1. Throughout this section, symbols þ, �,
Q

, and
P

stand for Boolean
notations.

Fig. 2. Conceptual block diagram of our design.

Fig. 3. The MPZ architectural design.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

Signal s ¼
Plog2n�1

k¼0 ck is the select line of the multi-
plexers that control which data should be chosen for the
corresponding Mi. This select line should be low for the
first clock cycle and high for the rest. Thus, s can be
implemented by simply ORing all the counter outputs ci.
The MPZ unit functions in an efficient manner; in essence,
it reports all r matches in exactly r cycles. This implies that
in case of the need to report the first r matches instead of
all possible matches, a comparator unit could be added to
the MPZ design wherein the count value c and the r value
are compared. Once the count exceeds r, the enable line
EN is set to zero, hence disabling the MPZ unit.

3.2 Scalability

The MPZ unit can be designed for any number of n inputs.
However, the synthesized MPZ design for a real database
that requires up to thousands of TCAM entries would be
very costly. Hence, a modular design that could scale up to
the required n inputs is essential.

IPv6 has much longer fields in the header of packets. Our
design does not alter the filters placed in the TCAM.
Moreover, the MPZ approach processes the match lines
coming from the TCAM words. Therefore, it can efficiently
be scaled to IPv6 classifiers that use large TCAMs or
multiple parallel TCAMs for packet classification.

3.2.1 Cascaded MPZ Architecture

To achieve a modular design with cascaded blocks, we
define an output enable (OE) line, which indicates when all
the matches have been provided at the output [14]. This
signal is activated when any number of matches are found
at the output, and deactivated when all the matching results
have been provided. It also highly depends on the EN line.
The OE line is an active low signal used for activating lower
priority MPZ units. The OE line in an MPZ can be
expressed as follows:

OE ¼ EN þ
Xn�1

i¼0

EPi: ð4Þ

Similar to the multilevel look-ahead architectures [15],
[16], we cascade v w-bit MPZ units to design an n ¼ v� w
bit MPZ block. Fig. 4 shows the concept of cascading eight
8-bit MPZ modules to design a 64-bit MPZ. In this figure,
higher priority stages are placed at the left. By connecting
the OE line of each stage to the EN (enable line) of the next
stage, we assure that each block would be enabled only if all
the higher priority blocks have completed reporting their
matches at the output. The cascaded design would have at
most two additional clock cycle delays for any mismatching
MPZ unit. The authors in [2] claimed that the number of

multimatch results could reach up to 153 when considering
the two header fields, source and destination IP addresses
only. It is clear that when considering all five header fields,
the number of multimatch results would drop dramatically.
The authors of the SSA paper stated that a packet can match
up to only 12 unique filters for the SNORT rule sets in the
worst case [11]. Moreover, as authors in [2] stated, the
maximum degree of matches (number of matches) often
requested in real-world ACL filters including router
databases and SNORT rule sets is statistically around 8.
Considering these facts, an 8-bit MPZ unit seems to be an
optimum size choice for a basic MPZ cell. Therefore, the
counter used in any MPZ unit can be designed to count up
to 8. This implies that only log2 8 ¼ 3 lines are required for
the counter, and the comparator can be designed to
compare the count value and r ¼ 8. The modularity of our
design allows the user to easily redesign MPZ for r > 8
when needed.

3.2.2 Parallel MPZ Architecture

Due to the complexity of the connections among the
cascaded cells in the multilevel folding architecture [15],
we have not scaled the design using this method.
Furthermore, the parallel priority look-ahead architecture
discussed in [13] would not be directly applicable for the
multimatch design. This is because each MPZ unit in the
second stage should remain enabled for at least eight clock
cycles to report multiple matches at the output. Multiple
matches may occur at any MPZ cell in the second stage. The
ORed output of the corresponding set of inputs would cause
the initial MPZ unit outputs to remain high for only one
clock cycle, hence enabling the matching unit for only one
clock period. This would result in reporting only one match
from that unit and not other matches. However, by using a
slower clock for the counter of the first stage MPZ
comparing to the second stage MPZ units, finding multiple
matches would become possible. The first stage MPZ unit
would maintain each matching output for a longer period of
time, enabling the second stage MPZ units to report all the
matches.

In case of a 64-bit multimatch design, the first MPZ unit
should have a clock period of at least eight times slower
than the eight MPZ units in the second stage. In addition to
the frequency of Clk that is eight times faster than Clk0, the
rising edge of Clk should be delayed by one TClk=2 for
proper functionality. This is because the second stage MPZ
units should see their enable lines at the rising edge of the
clock Clk. The first stage MPZ unit provides its outputs at
the rising edge of the clock Clk0; therefore, a delay between
the rising edge of the two clocks is needed to ensure proper
functionality. This delay does not affect the overall
performance. Fig. 5 shows the scalable multimatching
design using the concept of the parallel priority look-ahead
architecture.

3.2.3 Cascaded versus Parallel Architecture

In the parallel architecture, each matching MPZ unit in the
second stage would add a latency of 8� TClk to report
matches in the other matching MPZ units. However, if there
are r matches only in the last eight inputs, the parallel

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Fig. 4. Cascaded MPZ architecture for a 64-bit MPZ design.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

design would have a latency of only 8� TClk to enable the
last MPZ unit in the second stage and would take another
r� 1 clock cycles to report the matches at the output. In this
particular case, the parallel architecture performs faster
compared to the 8-bit cascaded architecture mentioned
earlier that would have a latency of ð2� 8� 1Þ ¼ 15 clock
cycles to enable the last MPZ stage. The clock period of the
cascaded architecture is assumed to be the same clock
period of the MPZ units in the second stage of the parallel
architecture.

The speed of our scaled multimatch circuits highly
depends on the location of the matches. The cascaded
architecture would perform more efficiently if matches are
distributed uniformly among MPZ units. The parallel
configuration would perform faster if the matches are
concentrated within one MPZ unit at lower priority
locations.

Area is another concern for the two scalable configura-
tions. The parallel architecture would have an additional
MPZ unit plus a few OR gates, compared to the cascaded
architecture. More details on cascaded and parallel archi-
tectures can be found in [17].

3.2.4 Applications and Limitations of MPZ

One main advantage of the MPZ architecture is that it has
fixed update complexity. This is due to the fact that no
filter management (e.g., sort, split, duplicate) is required
when filters are updated in the set (e.g., added or deleted).
Our customized PZ is a hardware engine capable of
finding all matches, regardless of the location of matching
filters. This feature makes the MPZ architecture highly
efficient for applications where frequent updates are
needed in MMC.

As for limitation of MPZ, performance of the scaled MPZ
in large filter databases depends on the locations of the

matches (see Section 3.2.3). A sorting mechanism to
rearrange filters based on their priority would be costly.
Instead, partitioning schemes that reorganize the filters
based on matches and intersecting filters are introduced in
the next section. Efficient partitioning can further improve
the MPZ performance in terms of speed, since it allows
potential matching filters to be gathered in small TCAMs.
This technique may, however, require larger update time
due to partitioning. The partitioning schemes are quite cost-
effective, as they can be complemented to the MPZ unit and
other architectures for finding all matching filters in only
one cycle.

In addition, TCAMs are complex devices and architec-
tural changes that modify TCAMs involve large amount of
investment and long development time [2]. Hence, algo-
rithmic approaches that utilize off-the-shelf TCAMs to solve
the problem may be preferred.

4 MMC USING OFF-THE-SHELF TCAMS

The methods explained in [2], [4], and [11] are schemes
that utilize off-the-shelf TCAMs for multimatching packet
classification. Our strategy would be to design a hardware
engine consisting a filter processing unit and the conven-
tional TCAM cell for reporting multiple matches. As we
proceed further, we will also see that the regular (instead
of priority) encoder can be used. Replacing the priority
encoder is a huge benefit in terms of cost, delay, and
power.

4.1 Partitioning Rule

Intersection among filters in the database mainly results in
multiple matches. Informally speaking, intersection is
defined as having filters that are subset of one another,
such that some filters completely overlap others. The filter
processing unit applies the partitioning schemes on the
packet filter set and conventional TCAMs are used to
accommodate the filters of each partition [18].

Let fi½w� 1 : 0� and fj½w� 1 : 0� denote two filters of
bit-width w. We define the term distance between the two
filters as

di;j ¼
Xw�1

k¼0

fi½k� � fj½k�; ð5Þ

where � in (5) is a three-valued operation, defined using
XOR operation, as follows:

a� b ¼ 0; if at least one of a or b is a don0t-care;
a� b; otherwise:

�
ð6Þ

In the partitioning schemes that follow, performing the
TCAM search on one partition can significantly improve
performance.

4.2 First-Level (Maximum) Intersection Partitioning

The Maximum Intersection Partitioning (MXIP) scheme,
which is explained in this section, partitions the filters in the
database such that each partition would hold the maximum
number of intersections among its filters. This way all
possible matches for a packet will be concentrated within
one partition only. In addition, partitions will be disjoint,

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 9

Fig. 5. A 64-bit multimatching design using parallel architecture.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

i.e., any pair of partitions do not have any overlap in the
filters that they contain. Since there would always be a
number of filters that do not have any intersection with any
other filter, one last partition is needed in which all these
distinct filters can be placed.

The pseudocode for generating the partitions based on
the concept of maximum intersection is shown in Fig. 6. In
this pseudocode, F refers to the set of all filters, and Pm
denotes the mth partition. Since distance computation has
commutative and associative properties, any filter could be
the seed of partition. For simplicity, we chose the seed to
be the first element remaining in the original set F (i.e., f1)
in every iteration. The for loop grows the partition around
the seed based on the MXIP heuristic. Lines 16-20 indicate
that all distinct filters (that make no intersection with other
filters) will be chosen to be assigned to a separate
partition. Np would be the total number of partitions
generated based on the MXIP scheme. In line 21, nm is the
total number of filters in partition Pm. Hence, Np partitions
ðP1; P2; . . . ; Pm; . . . ; PNpÞ will be formed, from which the
last partition (PNp) is a collection of all distinct filters.

We apply the main loop of MXIP on the entire filter
set ðF Þ until the set is empty. The main loop is shown on
lines 8 to 15. We choose a filter from F (the first filter) and
add all zero distance filters from F to the first partition.
Inside the partition generated, we add all zero distance
filters from F to any filter in the partition generated. All
filters that are placed in partitions are removed from the
initial F set. After set F is emptied, and filters are placed in
partitions, if any partition only contains one filter (it had no

zero distance with any other filter), that filter is placed in
partition Ptemp. All distinct filters are placed in Ptemp. Np

would be the number of partitions generated by MXIP, and
since the distinct filter set is the last partition, PNp would be
the last partition.

Fig. 7a illustrates a small example of a set of 10 filters
partitioned based on maximum intersections. Filters are
assumed to be 8 bits long for simplicity. Filters f1, f4, and
f10 have zero distance, hence they can form one partition,
i.e., P1. Also, filters f8 and f9 have zero distance with
filter f10; therefore, they are also placed in P1. Filters f5 and
f6 make a zero distance with filter f2 and form partition P2.
Finally, filters f3 and f7, which have no zero distance with
any other filters, form the distinct filter collection and are
placed in a separate partition ðP3Þ.

MXIP would ensure that all possible matches for a given
search key are located in one partition. One possible
architecture of a multimatch packet classifier using the
MXIP approach is illustrated in Fig. 7b. All filters in each
partition are placed in one TCAM module. The single-
match priority encoder unit is replaced by an MPZ circuit
along with an address encoder. The MPZ unit (as described
in Section 3.1) is a customized PZ circuit that gives all the
match lines in a prioritized sequence. The MPZ and encoder
circuit connected to the TCAM provide the addresses of the
r matches in at most r cycles. Performance of MPZ structure
is not adversely affected by the location of matching filters
as discussed in Section 3.2, since potential matching filters
are grouped as closely as possible by the partitioning
scheme. Note that the last partition ðPNpÞ does not need an
MPZ unit since it would result in at most one match, and
therefore, an address encoder is sufficient. No contention
resolver (CR) in this architecture is required because all
partitions can be searched in parallel. However, as we
discuss in Section 5, having such resolver will significantly
reduce the power consumption. In this example, if the
search key “11010010” arrives, partition P1 contains the
matches, and the system would provide the three matching
results f1, f4, and f10 in exactly three clock cycles.

4.3 Second-Level (Minimum) Intersection
Partitioning

A classifier engine using MXIP finds all r matches in
r cycles. By further partitioning the maximum intersected

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Fig. 6. Pseudocode for MXIP.

Fig. 7. Application of MXIP to a small example. (a) Partitioning.

(b) The classifier engine.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

filters intelligently, all r matching addresses can be found in
only one cycle. The second level of partitioning is based on
minimum intersections among the filters in each partition.
This time, subpartitions are generated for as many number
of completely overlapping filters. Filters in each subparti-
tion should have a distance greater than zero among each
other. This indicates that after minimum intersection
partitioning (MNIP) there are no two filters that have a
100 percent overlapping in each subpartition, unlike the
MXIP where overlaps were concentrated in one partition.

The pseudocode for generating minimum-intersected
partitions is shown in Fig. 8. We assume that Np number of
partitions are generated by the MXIP method. Pm denotes
the mth partition based on MXIP. Therefore, Pm;z refers to
the zth subpartition in Pm generated by the MNIP method.
In line 18, sm has the number of subpartitions in each
partition.

The main loop of MNIP is applied to every MXIP
partition. The main loop is shown on lines 9 to 16. jPmj is the
number of filters in Partition m generated by the MXIP
scheme. All zero distance filters are placed in separate
partitions. This indicates that if all filters in the MXIP
partition had zero distance with one another, the MNIP
would generate jPmj partitions in the worst case.

If all subpartitions generated by the MNIP approach are
placed in separate TCAMs, MNIP would result in finding
all matches in one cycle. This is because of the fact that if
the entire filter set is partitioned in such a way that each
partition would result in at most one match for a given
packet, since all partitions are searched in parallel, all
matching addresses are ensured to be provided in only
one cycle.

5 MX-MN-IP AND ITS STRUCTURAL ADVANTAGES

The maximum-minimum intersection partitioning (MX-MN-
IP) approach is obtained by first applying the MXIP and then
the MNIP to the filters in the set. Subpartitions are placed in

separate TCAMs and matching indices are provided at the
output. A resolver unit is used in MX-MN-IP to perform the
TCAM search on one partition only.

In this section, we summarize the main advantages of
MX-MN-IP, i.e., low power, high speed, efficient update,
and scalability for parallelism.

5.1 Power Saving

Performing the TCAM search on only a small portion of the
entire database can significantly save power consumption
due to the frequent charging and discharging of the highly
capacitive match line. Power consumption is directly
proportional to the number of entries being searched in
parallel in a TCAM. The MXIP method effectively partitions
the database, hence for each packet, only a small portion is
being searched, while all others remain idle.

Since each subpartition (TCAM) would result in only one
match, the PZ would not be required anymore. In addition,
the last filter collection would result in only one match and
would not need a PZ unit. This not only reduces the cost but
also further improves the power saving. The priority
encoder unit, which is a power hungry unit in a conven-
tional TCAM structure, would be removed. Instead, a
conventional address encoder can be used to provide the
addresses of the matching results.

The MX-MN-IP approach can also be used in packet
processors where the conventional single-match packet
classification is desired. Traditionally, TCAMs perform the
search and provide the index of the highest priority match
in one cycle. However, our approach performs the TCAM
search on a small fraction of the entire filter set and, thus,
reduces the power consumption by at least one order of
magnitude.

To achieve the power savings mentioned by partitioning,
a CR unit should be designed so that the search mechanism
would result in enabling the TCAM search on one partition,
while disabling others. An identification code for each
partition (a representative of the filters in that partition) can
be defined to facilitate choosing the right partition. The
following equation expresses how the ID is encoded for
each partition:

IDm½k� ¼
0; if all fi½k�0s are 0 ð0 � i � nm � 1Þ;
1; if all fi½k�0s are 1 ð0 � i � nm � 1Þ;
x; otherwise:

8<
: ð7Þ

In (7), IDm½k� is the bit position k for the ID code of a
particular partition (i.e., Pm), where 0 � k � w� 1,
1 � m � Np � 1, and nm ðjPmjÞ denotes the number of filters
in the mth partition generated by MXIP. The ID code
indicates how the filters in one partition are intersected.
Hence, if for each partition a unique ID code is generated,
when the packet arrives, an initial search based on
searching these ID codes in parallel would result in one
ID. All the ID codes can be placed in a small TCAM, as
shown in Fig. 9. The arriving packet is compared against
these IDs, and the match line of the matching ID entry
would enable the partition it represents. Therefore, only one
partition (TCAM) performs the search, while others remain
idle. Since there is one partition (the last one) containing
distinct filters with no zero distance among them, the ID

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 11

Fig. 8. Pseudocode for MNIP.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

encoding cannot be applied to this partition. In other words,
for this partition no unique ID can be defined. As a result,
this partition should be searched only if there is no match
found at other partitions.

To be more clear, Fig. 9 shows the minimum-
intersected partitions for the example and how they are
placed in TCAMs. Fig. 9 also shows the ID codes for the
partitions generated for the example. Note that partition
P3 is the set of distinct filters and, thus, does not hold
any unique ID. The ID codes for partitions P1 and P2 are
placed in a TCAM unit to perform the initial search. As
shown, ID codes are generated based on the union of all
maximum intersected filters in one partition. If packet
“11010010” arrives, the initial TCAM (CR TCAM) would
enable the first maximum-intersected partition, and the
search key would be sent to all TCAMs generated based
on the second partitioning heuristic. This packet matches
filters f1, f4, and f10, and their addresses are provided in
one cycle.

It is important to point out that we can always come up
with unique ID codes for each partition except the distinct
filter collection that does not have one. However, the ID
codes may not always have nonzero distance with one
another. In other words, if two ID codes overlap (have
zero distance), a certain search key may activate both
partitions, while the result(s) will be found in only one
partition. This issue can theoretically degrade the power
performance of the system. However, the overlapping ID
code cases are very unlikely to happen. The number of
bits used for filter representation is relatively large
(around 150 bits), making the ID codes very unlikely to
intersect. In the worst case, if all ID codes overlap, an
MPZ unit can be used after the CR TCAM to activate the
search on multiple partitions sequentially to save power
consumption. In such rare cases, our scheme would still
perform better in terms of power than other systems (e.g.,
the SSA [11], which consumes power proportional to the
total number of TCAM entries in every set that is accessed
in each round of TCAM lookup). This relationship also
shows how MX-MN-IP is coupled with the MPZ structure
to maintain low power consumption. The overall speed of
our system would also be limited to more than one TCAM

lookup, due to performing multiple TCAM searches
sequentially.

5.2 Updating Filters

Updating filters in MX-MN-IP deals with the following
cases:

. Filter Deletion. Updating the packet classification
database may result in the same partitions when
one filter is deleted. However, if a filter that
provided zero distance with a few sets of filters is
deleted, partitions may alter. In this case, if those
sets of filters have at least one nonzero distance with
each other, that partition should be split into two
separate partitions. This is due to the fact that the
filter that combined some filters together no longer
exists. Hence, some sets of filters do not have any
zero distance with the other sets in that partition.
This leads to creating a new partition, where the sets
of filters are separated. In our running example, if
filter f10 is deleted from the P1 set, filters f1 and f4

do not have any intersection with filters f8 and f9

anymore. Therefore, partition P1 would be divided
into two partitions; one containing filters f1 and f4,
and the other containing filters f8 and f9.

. Filter Addition. In most cases, adding a new filter
does not change the partitions very much. This filter
must be compared against the filters of each
partition, to see where a zero distance is generated.
The new filter should be added to the partition in
which it makes a zero distance. However, in case this
filter has a zero distance with more than one
partition, all such partitions are combined into one
partition.

. ID Update. Updating may also alter the ID codes in
the CR. The ID code for each partition can be
generated only after all filters in that partition are
known. Based on the ID encoding, the insertion or
deletion of a filter may cause a bit position in the ID
code to change from 0 or 1 to x or vice versa as
reflected in (7).

The filter partitioning would not add to the delay of the
system. This is due to the fact that filter partitioning is
assumed to be done only once when the system is
assembled. The performance of the system, thus, depends
on the components used to assemble it and not on the way
filters are stored.

Updating prefixes or filters is an important issue in
packet forwarding and classification systems, as it may
require time-consuming processing and thus large delay in
the system. As observed from Fig. 6, adding or deleting
filters would lead to a maximum of two inner loops of
processing filters for the MXIP scheme. Therefore, partition-
ing would have the complexity of OðjF j2Þ. Updating filters
would not really add to the delay, since updating generally
does not occur as often as it does in packet forwarding.

As for updating, N newly inserted filters would generate
N �OðjF j2Þ update cost. However, this is valid when we
only consider the software cost to partition the filter set, and
it does not account for the hardware partition update cost.
Insertion and deletion can cause partitions to be merged

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Fig. 9. Classifier engine using the MX-MN-IP approach.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

and split, yielding changes to the tree structure and changes
to the ID codes for the CR. The previous MMC schemes
may lead to high update costs at extreme cases as well.
When updating is a design concern, the MPZ design
scheme alone can be employed, as it has the lowest update
complexity.

5.3 Parallel Processing

Having a small and efficient CR is a critical feature for
further performance increase. Multiple CR units can be
utilized in the system such that multiple search keys can be
processed in parallel. Such property makes our system even
more attractive. Fig. 10 shows how multiple CRs can be used
in the design to achieve high speedup. If any arriving
packets do not require accessing the same partition, q ðq > 1Þ
packets can be classified in at most one cycle. However,
multiple packets may require accessing the same parti-
tion(s). Probabilistic analysis shows that the expected
number of packets that can be processed simultaneously is
approximately q=2 [17].

6 EXPERIMENTAL RESULTS

6.1 Simulation of MPZ

An 8-bit MPZ unit was designed and implemented using
Synopsys tools [19]. The inputs to the MPZ unit were
assumed to be the TCAM output match lines. Assuming
m½7 : 0� to be “01011000” (58H) for the MPZ input lines,
there would be three matches. Output results EP ½7 : 0�were
observed to be “00001000” (08H), “00010000” (10H), and
“01000000” (40H) on the first three clock cycles, respec-
tively. The fourth clock cycle would provide all zeros at the
output, indicating that no more matches were found. We
assumed the enable line EN to be high until all matches are
reported at the output. The encoder then receives EP ½7 : 0�
from the PZ and reports all three matching addresses in
three clock cycles.

Various size MPZ units were also designed and
implemented. The maximum throughput of a single MPZ
unit would be the smallest clock period for the circuit to
function correctly. Table 2 compares the statistics for four
MPZ units that we have implemented. As n grows, the

delay and the cost of MPZ both increases. However, note

carefully that growth of critical path delay, shown in the

second column, is not an indication of improvement. To be

more clear, the third column shows the estimated speedup

ðSnÞ in each case compared to a software-based classifica-

tion approach. We assumed that the host running the

classification software needs at least one memory access

and one comparison instruction per entry. This means the

speedup will be Sn 	 r�n�ðtmemþtcmpÞ
r�TClk n

, where tmem and tcmp refer

to the corresponding instructions, and TClk n is the duration

of the clock driving an n-bit MPZ; obviously, TClk n should

be larger than the delay values given in Table 2. Note that

in practical cases r
 n, and thus, as n grows the speedup

will be even larger than 40-73 range given in the table

because in our approach the overall performance depends

on r and not n. Such property makes our hardware engine

quite attractive in applications that require fast multimatch

packet classification.
Table 3 also summarizes the design specification for a

64-bit MPZ cell by cascading n-bit MPZ stages, for

different values of n. The table also indicates increasing

and decreasing trends for the worst-case delay (second

column) and area cost of cascaded designs (third column),

respectively. A designer can do the tradeoff and choose

appropriate size MPZs that satisfy the time and area

constraints.
Nowadays, packet sizes vary from 40 bytes (TCP

acknowledge packets with only header and no payloads)

to 1,500 bytes (Ethernet packets). On average, Internet

packet size is reported to be 402.7 bytes [11]. On the other

hand, typical TCAMs perform one lookup task in 4 ns.

Based on the results in Table 2, an 8-bit MPZ could achieve

32-Gbps classification rate for minimum packet size and

324 Gbps for average-sized packets. Overall, MPZ speed is

observed to be much higher than other software and

hardware schemes.

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 13

Fig. 10. Usage of multiple CR units to enhance parallelism.

TABLE 2
Simulation Results for n-Bit MPZ Units

TABLE 3
Implementing a 64-Bit MPZ

by Cascading Various Size MPZ Units

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

6.2 FPGA Prototyping

The 8-bit MPZ design was implemented on the NIOS II
Altera board [20]. The design was simulated in Quartus II
simulator environment [21]. The MPZ design was imple-
mented on device number EP1S10F780C6 of the Stratix 1s10
FPGA family series. As expected, all matches were found
given one clock cycle each.

Various-bit MPZ units were also generated, and the
symbol blocks were extracted in Quartus II. Table 4
compares different sizes of MPZ units implemented on
the Stratix FPGA in terms of total number of Logic Elements
(LEs), total number of pins required, and timing analysis
results. The MPZ unit(s) occupied a very small portion of
the FPGA. The number of LEs is directly proportional to the
cost of the system. Therefore, the small area of the MPZ
units is an indication of low costs. In the table, n is the size
of MPZ, TClk indicates the minimum acceptable clock
period for each MPZ size, and Tpd is the worst-case
propagation delay from the least significant input bit to
the most significant output bit. As observed, the results are
slightly different from the results in Table 2, because of the
different libraries used in the Synopsys and Quartus
toolsets.

6.3 Simulation of the Partitioning Approach

We have applied our partitioning scheme to various
randomly generated filter sets that were designed to have
the same characteristics as real filter sets, e.g., numbers,
sizes, and structures of filters. The random filter set
generation and the partitioning method was simulated
using MATLAB [22]. Table 5 shows the average statistics
of the partitions generated. The filter sets were assumed to
have 5,000 filters with bit-width of 150 each, which is
typical for real databases. The second column shows the

percentage of filters that generate multimatch results, as
expressed by

� ¼
PNp�1

m¼1 jPmjPNp

m¼1 jPmj
: ð8Þ

In Table 5, rmax is maximum number of filters that would
generate a match in each MXIP partition. The maximum
size of partitions is jP jmax and jP javg is the average size of
partitions. Np is the total number of partitions generated by
the MXIP scheme. The partitioning statistics indicate that
for each set of simulation results, a total of Np MXIP
partitions would be generated, each holding a maximum of
jP jmax MNIP partitions. The size of the distinct filter
collection is jPNp

j. The last two columns show the ratios
in percent for the largest and average-sized partitions,
respectively.

As observed from the table, most partitions have very
few entries, and most filters would be positioned in the
distinct filter collection. This significantly reduces the
power consumption by about two to three orders of
magnitude, as in multimatch applications, the last big
partition is rarely awakened.

The minimum size of subpartitions jsjmin after applying
MNIP is also shown in Table 5. The minimum size of
subpartitions is 1 or 2 in all cases, which may cause a gap
between the minimum and maximum sizes of partitions in
real scenarios. However, note that the maximum size of
MNIP partitions is around 8. This means that several small
TCAM units plus a large TCAM (for the distinct filter
collection) are required for the multimatch packet classifica-
tion task. The size and number of partitions generated by
our scheme are quite practical for mapping to available
TCAMs. Off-the-shelf TCAM chips are available for various
entry sizes [23]. Most TCAM products can be configured to
allow independent and uneven portions (called buckets) of
the TCAM chip to function in parallel [11], [24]. In addition,
customized TCAMs can be always used for small entry
sizes needed in MX-MN-IP. Load balancing mechanisms
need not be employed as it is not a critical concern in our
approach. Hence, in general, MX-MN-IP does not nega-
tively affect TCAM space utilization. Moreover, our
classifier engine using MX-MN-IP can ultimately be
implemented as an ASIC, where uneven TCAM sizes
would not matter.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

TABLE 4
Comparison of Various MPZ Units

Implemented on Stratix FPGA

TABLE 5
Partitioning Statistics

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

6.4 MX-MN-IP Speedup

The speed of our partitioning architecture is high
compared to other conventional hardware-based designs.
The delay time of a conventional TCAM can be written as
TTCAM � Tword þ TPE , where Tword is the delay of the TCAM
word, and TPE is the delay of the priority encoder.2 For
large TCAMs, Tword � TPE � TTCAM=2 [25]. Our approach
removes the need of the priority encoder unit, and hence,
TPE does not come into picture at all. The delay of our
design can be written as

TMX-MN-IP � TCR þ TPm þ TEncoder þ TPNp : ð9Þ

It can empirically be shown that the search delay of a
small TCAM (i.e., CR unit and TCAMs holding subparti-
tions) is around TTCAM=4 compared to large conventional
TCAMs, and that the encoder unit would also have a
latency of approximately TTCAM=4 [17]. In the MX-MN-IP
approach, the worst case is assumed to be searching one of
the maximum-intersected partitions and searching the set of
distinct filters afterward. Hence,

TMX-MN-IP �TTCAM=4þ TTCAM=4þ TTCAM=4þ TTCAM=4
�TTCAM:

ð10Þ

A conventional multimatch TCAM-based approach
would spend at least r � ð7� TTCAMÞ cycles for finding
r matches [2]. Our approach finds r matches in one
conventional TCAM cycle, which is far better than software
and hardware approaches. Hence, for finding r matches, we
obtain speedup of at least

S ¼ r � ð7� TTCAMÞ
TTCAM

¼ 7r; ð11Þ

where r would be the maximum number of possible
matches in a filter set for a given search key. For a
maximum of eight matches, the MPZ design would gain a
speedup of 9.18 and the MX-MN-IP approach would
achieve a speedup of 56 compared to the conventional
approach, which is more than an order of magnitude
higher. Note that, in our architecture, performance does not
degrade when the number of matches increases. Scalability
feature makes our design attractive for high-speed packet
processing. Assuming 4-ns lookup time for TCAM, the
MX-MN-IP scheme would achieve at least 80- and
805.4-Gbps classification rates on average. This is well
above the highest MMC rate reported in literature, e.g.,
20 Gbps/201.35 Gbps for minimum/average packet size
under the same conditions in the SSA scheme. It is clear that
parallel processing would achieve even higher rates.

6.5 Cost

The cost of a conventional TCAM is approximately
ATCAM � Aword þAPE , where Aword and APE are the TCAM
word area and the priority encoder area, respectively. The
area of our classifier engine can be written as

AMX-MN-IP � Aword þAEncoder þACR: ð12Þ

As the priority encoder is a very expensive unit, for any

size: APE > AEncoder þACR. Hence, the overall cost (area) of

our classifier is approximately the same as a conventional

(off-the-shelf) TCAM-based classifier.

6.6 Power Estimates

For the common case of nonzero distance between any two

ID codes, the CR TCAM triggers exactly one MXIP partition

for each search key. The overall power consumption per

search depends on the size of the partition triggered (i.e.,

jPmj size of partition m). Suppose jF j is the size of the entire

filter set, and jPmaxj ðjPminjÞ is the maximum (minimum)

size of a partition. As power consumption of a TCAM is

linearly proportional to its size, power saving ð�EÞ, when

partition m is triggered, falls within the following bounds:

jF j � jPmaxj
jF j � �E � jF j � jPmjjF j � jF j � jPminjjF j : ð13Þ

To elaborate on power savings more accurately, con-

sider a general case when n search keys are being analyzed.

Let the total number of search keys be written as

n ¼ nsingle þ nmulti, where nsingle is the number of classifica-

tion searches activating the largest partition and resulting

in a single match, and nmulti represents the number of

searches that activate partitions other than the distinct filter

collection. On average, power consumption of our system

for n search keys is

EMX-MN-IP ¼nsingle � Emax þ nmulti � Eavg

/nsingle � jPNp
j þ nmulti � jP javg:

ð14Þ

In this formula, Emax is the maximum power of our system

that is generated by triggering the largest partition (i.e., the

largest partition jPNp
j). Symbol / reflects proportionality

relationship between power and size. The average power of

our system ðEavgÞ for a typical multimatch search is

proportional to the number of entries for an average-sized

partition ðjP javg ¼ b
jF j�jPNp j
Np�1 cÞ. By defining three ratio factors

rmulti ¼ nmulti
n , !1 ¼

jPNp j
jF j , and !2 ¼

jP javg
jF j , we conclude

EMX-MN-IP / ð1� rmultiÞ!1 þ rmulti!2½ � � n � jF j: ð15Þ

Average power consumption for n searches in a TCAM

is proportional to the total number of entries, i.e.,

E � n � jF j. Therefore, for n search keys, MX-MN-IP power

saving (compared to single-TCAM implementation) can be

written as

�E ¼ 1� ð1� rmultiÞ!1 þ rmulti !2½ �

¼ ð1� !1Þ þ rmulti � ð!1 � !2Þ:
ð16Þ

In order to prove that MX-MN-IP can always achieve

power savings compared to the conventional approach, we

need to show that �E > 0. This relationship is always true,

since per definition 0 � rmulti, !1, !2 � 1 and !1 > !2 (in

fact, in most cases !1 � !2). The experimentation tabulated

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 15

2. Note that, in this paper, we consider TTCAM , i.e., one TCAM lookup
cycle, as the main clock cycle for time measurement. The ultimate clock
frequency of a running oscillator in the final implementation of classifier
will depend on TTCAM , I/O pins, and other cores and interface units.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

in the last two columns in Table 5 confirms these relations
clearly.

Equation (16) has been plotted in Fig. 11 to show the
power saving �E versus rmulti for different values of !1 and
!2. Clearly, significant power reduction (5 percent to
99 percent) is achieved compared to conventional (single-
partition) TCAM-based approaches. These analyses indicate
that our approach is highly efficient for applications in
which rmulti is large, i.e., when multiple matches (as
opposed to a single match) frequently occur.

6.7 Comparing with Other Techniques

Our TCAM-based architectures for multimatch packet
classification are superior than other similar approaches in
most practical aspects. Table 6 compares various TCAM-
based multimatch packet classifiers, including ours. The key
metrics such as power reduction, speed, usage of extra
memory (extra TCAM entries), and so forth are shown. In
the update column, N stands for the newly inserted filters,
and f stands for the number of header fields. While the MX-
MN-IP approach provides better results in terms of speed
and power consumption, the MPZ architecture performs
more efficiently in terms of update complexity.

7 CONCLUSION

We have introduced two multimatch classifier engines. The

first one, which is the MPZ architecture, is capable of

finding all r matches in exactly r cycles. The MPZ could

achieve speedup of 70 and 9 compared to software and

conventional TCAM-based approaches, respectively. The

MPZ design can operate at wire speed (i.e., approximately

three OC-192 using 0.18-�m technology) without perfor-

mance degradation. Second, intersection-driven partition-

ing techniques that use the concept of maximum and

minimum intersections among filters to efficiently partition

the entire filter set were proposed. We achieve significantly

higher performance compared to conventional TCAM-

based approaches. Power consumption was also reduced

by one order of magnitude or more, due to performing the

TCAM search on a small portion of the packet filter set. Our

design can be employed by IPv4/IPv6 packet classifiers that

utilize TCAMs in their architectures.

REFERENCES

[1] K. Zheng, H. Che, Z. Wang, and B. Liu, “TCAM-Based Distributed
Parallel Packet Classification Algorithm with Range-Matching
Solution,” Proc. IEEE INFOCOM, 2005.

[2] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for Advanced Packet Classification with Ternary
CAMs,” Proc. ACM SIGCOMM ’05, Aug. 2005.

[3] SNORT Network Intrusion Detection System, www.snort.org, 2008.
[4] F. Yu, R.H. Katz, and T.V. Lakshman, “Efficient Multimatch

Packet Classification and Lookup with TCAM,” Proc. 12th Ann.
IEEE Symp. High Performance Interconnects (HOTI ’04), pp. 28-34,
Aug. 2004.

[5] D.E. Taylor and E.W. Spitznagel, “On Using Content Addres-
sable Memory for Packet Classification,” Technical Report
WUCSE-2005-9, Mar. 2005.

[6] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proc. 11th IEEE Int’l Conf. Network
Protocols (ICNP ’03), pp. 120-131, Nov. 2003.

[7] F. Yu, R.H. Katz, and T.V. Lakshman, “Gigabit Rate Packet
Pattern-Matching Using TCAM,” Proc. 12th IEEE Int’l Conf.
Network Protocols (ICNP ’04), pp. 174-183, 2004.

[8] H. Song and J.W. Lockwood, “Efficient Packet Classification
for Network Intrusion Detection Using FPGA,” Proc. ACM/
SIGDA 13th Int’l Symp. Field-Programmable Gate Arrays
(FPGA ’05), Feb. 2005.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

TABLE 6
Comparison of Various TCAM-Based Multimatch Packet Classifiers

Fig. 11. Power saving versus rmulti for different values of !1 and !2.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

[9] N.F. Huang, W.E. Chen, J.Y. Luo, and J.M. Chen, “Design of
Multi-Field IPv6 Packet Classifiers Using Ternary CAMs,” Proc.
IEEE Conf. Global Telecomm. (GLOBECOM ’01), vol. 3, pp. 1877-
1881, Nov. 2001.

[10] N.F. Huang, K.B. Chen, and W.E. Chen, “Fast and Scalable Multi-
TCAM Classification Engine for Wide Policy Table Lookup,” Proc.
19th IEEE Int’l Conf. Advanced Information Networking and Applica-
tions (AINA ’05), vol. 1, pp. 792-797, Mar. 2005.

[11] F. Yu, T.V. Lakshman, M.A. Motoyama, and R.H. Katz, “SSA: A
Power and Memory Efficient Scheme to Multi-Match Packet
Classification,” Proc. ACM Symp. Architecture for Networking and
Comm. Systems (ANCS ’05), pp. 105-113, Oct. 2005.

[12] F. Yu, T.V. Lakshman, M.A. Motoyama, and R.H. Katz,
“Efficient Multimatch Packet Classification for Network Security
Applications,” IEEE J. Selected Areas in Comm., vol. 24, no. 10,
pp. 1805-1816, Oct. 2006.

[13] C. Kun, S. Quan, and A. Mason, “A Power Optimized 64-Bit
Priority Encoder Utilizing Parallel Priority Look-Ahead,” Proc.
IEEE Int’l Symp. Circuits and Systems (ISCAS ’04), vol. 2,
pp. 753-756, May 2004.

[14] M. Faezipour and M. Nourani, “A Customized TCAM Architec-
ture for Multi-Match Packet Classification,” Proc. IEEE Global
Telecomm. Conf. (GLOBECOM ’06), pp. 1-5, Nov. 2006.

[15] C.H. Huang, J.S. Wang, and Y.C. Huang, “Design of High-
Performance CMOS Priority Encoders and Incrementer/
Decrementers Using Multilevel Lookahead and Multilevel
Folding Techniques,” IEEE J. Solid-State Circuits, vol. 37,
no. 1, pp. 63-76, Jan. 2002.

[16] J.S. Wang and C.H. Huang, “High-Speed and Low-Power CMOS
Priority Encoders,” IEEE J. Solid-State Circuits, vol. 35, no. 10,
pp. 1511-1514, Oct. 2000.

[17] M. Faezipour, “High Speed Multi-Match Packet Classification
Using TCAM,” master’s thesis, UTDEE-11-2006, Nov. 2006.

[18] M. Nourani and M. Faezipour, “A Single-Cycle Multi-Match
Packet Classification Engine Using TCAMs,” Proc. 14th IEEE
Symp. High-Performance Interconnects (HOTI ’06), pp. 73-78,
Aug. 2006.

[19] User Manuals for SYNOPSYS Toolset Version 2005.06, Synopsys,
2005.

[20] User Manuals for NIOS II IDE Version 6.0 Toolset, ALTERA, 2006.
[21] User Manuals for Quartus II Version 6.0 Toolset, ALTERA, 2006.
[22] User Manuals for Matlab 7.0 Toolset, MathWorks, 2005.
[23] IDT: Integrated Device Technology, www.idt.com, 2008.
[24] Y.-K. Chang, “Power-Efficient TCAM Partitioning for IP Lookups

with Incremental Updates,” Proc. Int’l Conf. Information Networking
(ICOIN ’05), pp. 531-540, Jan./Feb. 2005.

[25] M.J. Akhbarizadeh, M. Nourani, and C.D. Cantrell, “Segregating
the Encompassing Prefixes to Enhance the Performance of Packet
Forwarding Engines,” Proc. IEEE Global Telecomm. Conf. (GLOBE-
COM ’04), pp. 1612-1616, Nov./Dec. 2004.

Miad Faezipour received the BSc degree in
electrical engineering from the University of
Tehran, Tehran, Iran, in 2002 and the MSc
degree in electrical engineering in 2006 from
the University of Texas at Dallas (UTD), where
she focused on hardware-based architectures
for packet classification. She is currently a PhD
candidate at the University of Texas at Dallas.
Her research interests lie in the broad area of
high-speed packet processing in hardware and

deep packet inspection architectures. She is a member of the Center
for Integrated Circuits and Systems, UTD, and a student member of
the IEEE.

Mehrdad Nourani received the BSc and MSc
degrees in electrical engineering from the Uni-
versity of Tehran and the PhD degree in
computer engineering from Case Western Re-
serve University. He is currently an associate
professor of electrical engineering at the Uni-
versity of Texas at Dallas. His current research
interests include system-on-chip testing, signal
integrity modeling and test, and high-speed
packet processing methodologies and architec-

tures. He has published more than 130 papers in journals and refereed
conference proceedings including a Best Paper Award at the 2004
International Conference on Computer Design (ICCD). He is a recipient
of the National Science Foundation Career Award (2002) and Cisco
Systems URP Award (2004). He is a senior member of the IEEE and a
member of the IEEE Computer Society and of the ACM Special Interest
Group on Design Automation (SIGDA).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FAEZIPOUR AND NOURANI: WIRE-SPEED TCAM-BASED ARCHITECTURES FOR MULTIMATCH PACKET CLASSIFICATION 17

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 26, 2008 at 10:04 from IEEE Xplore. Restrictions apply.

